
MODBUS

Communication Protocol

for

DGT4 /DGTQ
and

DGT4 AN/DGTQ AN

WEIGH INDICATORS

DGT-DGTQ_APPENDIX_MODBUS_06.00_15.11_UK

DGT4 / DGTQ / DGT4AN / DGTQAN

1

INDEX

1. GENERALITIES .. 2

1.1. Selection of the MODBUS serial communication mode ... 2

1.2. Modbus transmission modes: ASCII or RTU (binary) .. 3
1.3. Setting Parameters of the serial transmission:Baud Rate and Data Format ... 4
1.4. Description of the Components and Message Format ... 4

1.4.1. Frame Format in ASCII mode ... 5
1.4.2. Frame Format in RTU mode ... 5
1.4.3. The Device address ... 6
1.4.4. The Function Code .. 6
1.4.5. The Data .. 6
1.4.6. The Error Check .. 6
1.4.7. Example of the message components in ASCII and in RTU ... 7

2. MODBUS FUNCTIONS .. 8

2.1. List of the supported Functions .. 8
2.2. List of the Transmission Strings .. 8

2.2.1. Functions 1,3 and 4: READ COILS STATUS / HOLDING / INPUT REGISTERS (01,03 and 04 Hex) 9
2.2.2. Functions 5 and 6: PRESET COIL / SINGLE REGISTER (05 and 06 Hex) ... 9
2.2.3. Function 15 and 16: PRESET MULTIPLE COILS / REGISTERS (0F and 16 Hex) ... 10

2.3 Example of function .. 10

3. ERROR CHECK METHODS .. 13

3.1. Parity Check ... 13
3.2. CRC algorithm: Cyclical Redundancy Check (RTU mode) .. 14

3.2.1. A procedure for creating the CRC is the following:.. 14
3.2.2. Placing of the CRC in the message: .. 14
3.2.3. Example in C Language of the CRC creation ... 14

3.3. LRC algorithm: Longitudinal Redundancy Check (ASCII mode) .. 15
3.3.1. A procedure for creating the LRC is the following: .. 15
3.3.2. Placing of the LRC in the message: .. 15
3.3.3. Example in the C language for creating the LRC.. 16

4. MODBUS EXCEPTIONS .. 16

4.1. List of the detected Exceptions .. 16

5. DATA AREAS ... 17

5.1. Input Registers data area .. 17
5.1.1. Input Status Register (Table 5.1.1)... 19
5.1.2. Output Status Register (Table 5.1.2) .. 19
5.1.3. Command Status Register ... 20

5.2. Holding Registers data area: .. 20
5.2.1. Command Register .. 26

5.2.1.1. Alibi Status Register .. 28
5.2.2. Channel X Status Register (Table 5.2.2) ... 31
5.2.3. SET-UP AREA ... 31

5.3. Coils Status data area ... 35

6. CALIBRATION ... 36

DGT4 / DGTQ / DGT4AN / DGTQAN

2

1. GENERALITIES
The Modbus communication protocol defines the structure of the messages and the communication mode between a
“master” device which manages the system and one or more “slave” devices which respond to the interrogations of the
master (master-slave technique). It defines how the master and the slaves establish and interrupt the communication, how
the transmitter and receiver are identified, how the messages are exchanged and how the errors are detected.
Only the master can start a transaction (Query) while the other devices (the slaves) respond by supplying the data
requested to the master or carrying out the actions requested in the query. The master can either address single slaves or
transmit a broadcast message to all. The slaves respond with a message (Response) to the queries which are individually
addressed, but do not transmit any answer to the master if there are broadcast messages.
A transaction can therefore have the following structures:
- Single question to a slave / Single answer from the slave
- Single broadcast message to all the slaves / No answer from the slaves

1.1. Selection of the MODBUS serial communication
mode
To select the Modbus communication protocol mode one should enter in the SET-UP ENVIRONMENT of the instrument
(see Figures 1 and 2):

 Input in the Set-up Environment

 Turn on the indicator, press the ZERO or the TARE key during the countdown (the display shows the “” menu).

 Select “” (with the ZERO or TARE keys) press PRINT to confirm the step.

 Select “” (with the ZERO or TARE keys) press PRINT to confirm the step.

 Select “” (with the ZERO or TARE keys) press PRINT to enter in the:

Menu for Setting the Communication parameters of the PC port:

 The “” item appears press PRINT to enter in this submenu and select the “” item press PRINT
again to confirm.

Now one should select the type of protocol: Ascii or Binary (RTU) (see Section 1.2) and the setting of the
instrument’s serial address (see Section 1.4.3).

ASCII or RTU

 The first item which appears is “” press PRINT to enter in the submenu:
choose either the ASCII or the RTU communication confirm the choice with PRINT.

Instrument serial address

 The second item which appears is “” press PRINT for a few instants “” is displayed
now type in the serial address of the instrument (or slave) confirm the entered value with PRINT.

Baud Rate – Data Format
 Now set the other communication parameters of the serial port, in other words, the Baud Rate and the Serial Word

Format, in the “” and “” steps, respectively (see Section 1.3).

 Press the C key various times until the display shows the message “”.

 Press PRINT to confirm the changes made or another key to not save.

DGT4 / DGTQ / DGT4AN / DGTQAN

3

Figure 1: Selection from SET-UP ENVIRONMENT of the MODBUS communication, setting of the Baud Rate and the serial
word format.

Figure 2: Selection from SET-UP ENVIRONMENT of the MODBUS communication (Ascii or Rtu) and setting of the serial
address of the instrument (or slave).

1.2. Modbus transmission modes: ASCII or RTU (binary)
In the selection from the SET-UP ENVIRONMENT of the requested Modbus protocol one is also asked to choose the serial
transmission mode which may either be ASCII or RTU (see Figure 2). This choice determines how the information is
packaged inside the message fields and how it is decoded.

 ASCII mode (American Standard Code for Information Interchange):
Each byte (8 bit) in a message is transmitted as 2 ASCII characters.
The main advantage of this mode is that it allows for time intervals up to a second between a character and another
during the transmission without provoking an error.

 RTU mode (Remote Terminal Unit):
Each byte (8 bit) in a message has 2 hexadecimal characters of 4 bits.
The main advantage of this mode, in comparison to the ASCII, is its greater density of characters which allow for the
transmission of higher volume of data equal to the baud rate.

 , , , , ,

 , , , , ,

 , ,

 , , , ,

 , , ,

 , , ,

 ,

2 digits

(one blinking)

DGT4 / DGTQ / DGT4AN / DGTQAN

4

1.3. Setting Parameters of the serial transmission:Baud
Rate and Data Format

In the SET-UP ENVIRONMENT, after having selected the type of serial transmission (ASCII or RTU) for the Modbus
protocol, one is asked also to choose the communication parameters of the serial port, in other words, the Baud Rate and
the Data Format (see Figure 1).

 Baud Rate (or transmission speed):

 …

 Data Format (or serial word format):

 , , , ,
 (n-8-1) (n-8-2) (n-7-2) (e-7-1) (e-7-2)
 NOTE: the advisable formats are:

 In ASCII mode: ,

 In RTU mode: ,

In which:

 no parity (none)

 even parity (Even)

Example: if one uses the data format will be:
8 Data Bits

 n = No parity
 2 Stop Bit

IMPORTANT: The type of serial transmission (ASCII or RTU) and the communication parameters of the serial port
(Baud Rate and Data Format) must be the same for each device connected to the MODBUS network.

1.4. Description of the Components and Message
Format
In both serial transmission modes (ASCII or RTU), a Modbus message is put by the transmitting device inside a frame,
which has a known beginning and end point. This allows for the receiving devices to locate the beginning of the message,
read the address part and determine which device it is addressed to (or all the devices, if the message is broadcast) and to
know when the message is complete. In this way the incomplete messages can be detected and consequently indicated as
errors.
The format of the messages, for the master as well as the slave, includes:
 The address of the device with which the master has established the transaction (the address 0 corresponds to a

broadcast message transmitted to all the slave devices).
 The function code which defines the requested action.
 The data which must be transmitted.
 The error check made up according to the CRC or LRC algorithm.

These fields are described in detail in the following paragraphs. For the Query and Response there is:
Query:
The function code tells the addressed slave device which action must be made. The data bytes contain some additional
information which the slave needs in order to execute the function. The error check field gives the slave a method in order
to confirm the integrity of the message contents.

DGT4 / DGTQ / DGT4AN / DGTQAN

5

Response:
 If the slave gives a normal answer:

The function code is the echo of the query function code. The data bytes contain the data retrieved from the slave, like
the registers’ values or the states.

 If a slave locates an error (format, parity, in the CRC on in the LRC) or it is unable to execute the requested action:
The master message is considered non valid and rejected and consequently the action will not be executed; a
Response in which the function code is changed in order to indicate that is an error response and the data bytes contain
a code which describes the error.

1.4.1. Frame Format in ASCII mode
In the ASCII mode the messages start with the (:) character (ASCII 3A Hex) and end with CRLF (Carriage Return Line-
Feed), of two characters (ASCII 0D and 0A Hex).
For all the other fields it is possible to transmit the 0..9 and A..F hexadecimal characters; the devices continuously monitor
the network to locate the (:) character; when one of these is received, each device decodes the next field (field address) in
order to verify whether the device is addressed.
Between one character and another of the message there may be various time intervals of up to 1 second; if there is a
longer interval, the receiving device assumes that an error has taken place.

A typical message frame is shown in the following figure:

START

ADDRESS

FUNCTION

DATA LRC
CHECK

END

1
CHAR

:

2
CHARS

2
CHARS

N
CHARS

2
CHARS

2
CHARS
CRLF

Figure 3: ASCII message frame.

1.4.2. Frame Format in RTU mode
In the RTU mode the messages start with a silent interval that lasts at least a period equal to 3,5 times the time period of a
character (T1-T2-T3-T4 time interval, see Figure 4). The devices monitor continuously the transmission bus, also during the
silent intervals. When the first field (the address) is received, each device decodes it in order to verify whether the device is
addressed.
For each field the characters which may be transmitted are all the decimal values from 0 to 255.
After the last transmitted character there will be a silent interval equal to at least 3,5 times the time period of a character,
indicating the end of the message; after this a new message can start.
The entire frame must be transmitted as a continuous stream. If there is a silent interval greater than the time period of 1,5
characters before the completion of the frame, the receiving device considers the incomplete message as ended and
assumes that the next byte is the address field of a new message.
In the same way, if a new message starts before a time period equal to 3,5 characters following a previous message, the
receiving device considers it a continuation of the previous message. This causes an error, and consequently the value in
the final field of the CRC will not be valid, due to the combination of the two messages.

A typical message frame is shown in the following figure:

START

ADDRESS

FUNCTION

DATA CRC
CHECK

END

T1-T2-T3-T4

8 BITS

8 BITS

N * 8 BITS

16 BITS

T1-T2-T3-T4

Figure 4: Frame of the RTU message.

DGT4 / DGTQ / DGT4AN / DGTQAN

6

1.4.3. The Device address
As mentioned above, the Modbus transactions always involve the master, which manages the line, and a slave at a time
(except for the broadcast messages). In order to identify the message consignee, the numeric address of the selected slave
device (one byte: two characters for the ASCII, eight bits for the RTU) is transmitted as the first field of the frame. Each
slave will therefore be assigned a different address number so that it can be identified. When the slave transmits its answer,
its address is entered in the response’s field address in order that the master knows which slave is responding.

Valid addresses for the slave devices are within a range from 0 to 247, in particular:

0 broadcast address (all the slave devices)
1 minimum possible address for the slave
247 maximum possible address for the slave

1.4.4. The Function Code
The field of the frame function code of a message contains two characters (ASCII) or eight bits (RTU). Valid codes are
within the range from 1 to 255 decimals.
When a message is transmitted from a master to a slave device the function code field indicates to the slave what kind of
action should be executed (for example the reading of the Input Registers, etc.).
When a slave responds to the master, it uses the function code field in order to indicate either a normal response (without
errors) or a type of error which has already taken place (called exception responses). For a normal response, the slave
simply echoes the original function code, while for an exception response it gives back a code which is equivalent to the
original function code, but with the most significant bit set at the 1 logic value.
Besides the modification of the function code for an exception response, the slave enters a single code within the data field
of the response message, in order to tell the master which type of error has taken place or the reason for the exception.

1.4.5. The Data
The data field is made by using groups of two hexadecimal digits, in the range from 00 to FF Hex. This can be made by a
pair of ASCII characters, or by RTU characters, in accordance with the network’s serial transmission mode.
The field data of the messages transmitted from the master to the slave devices contains additional information which the
slave must use in order to carry out the action defined by the function code.

1.4.6. The Error Check
The contents of the error check field depend on the used Modbus transmission mode (ASCII or RTU) because there are
two distinct error check methods. In particular:

 In ASCII mode

The communication strings are checked by an LRC (Longitudinal Redundancy Check) algorithm, see Section 3.3.

The error check field contains two Ascii characters, which are the result of the calculation of an LRC algorithm executed
on the contents of the message, excluding the initial character (:) and the CRLF terminator.

 In RTU mode

The communication strings are checked by a CRC (Cyclical Redundancy Check) algorithm, see Section 3.2.

The error check field contains 16 bits (implemented as 2 bytes of 8 bits), which are the result of the calculation of a CRC
algorithm executed on the contents of the message.
This field is the last of the message and the first byte is the one of the low order and is followed by one of the high order,
which is the last one of the frame.

One may find further details regarding the error check and the creation of the LRC and CRC algorithms in chapter 3.

DGT4 / DGTQ / DGT4AN / DGTQAN

7

1.4.7. Example of the message components in ASCII and in RTU
The following tables show an example of the fields inside a Modbus message, for a Query as well as for a normal
Response; in both cases the fields’ content is shown in hexadecimals and how the message is organised (framed) in ASCII
or RTU mode.

Query: “Read Input Registers” to the 01 Slave Device address, for the reading of the contents of 3 registers starting
from register n°8.

Field Name Example (Hex) ASCII: characters RTU: 8-bit field

Heading : (colon) None

Slave Address 01 0 1 0000 0001

Function 04 0 4 0000 0100

Start Address (HIGH) 00 0 0 0000 0000

Start Address (LOW) 08 0 8 0000 1000

Number of Registers (HIGH) 00 0 0 0000 0000

Number of Registers (LOW) 03 0 3 0000 0011

Error Check LRC (2 characters) CRC (16 bits)

Terminator CR LF None

Nr. of total bytes 17 8

Response:

Field Name Example (Hex) ASCII: characters RTU: 8-bit field

Heading : (colon) None

Slave Address 01 0 1 0000 0001

Function 04 0 4 0000 0100

Number of bytes 06 0 6 0000 0110

Data (HIGH) 02 0 2 0000 0010

Data (LOW) 2B 2 B 0010 1011

Data (HIGH) 00 0 0 0000 0000

Data (LOW) 00 0 0 0000 0000

Data (HIGH) 00 0 0 0000 0000

Data (LOW) 63 6 3 0110 0011

Error Check LRC (2 characters) CRC (16 bits)

Terminator CR LF None

Nr. of total bytes 23 11

In the Response of the Slave there is the Function Echo indicating that it’s a normal type of answer.
The “Number of Bytes” field specifies how many groups of 8-bit data are given back, in other words, the number of bytes of
the “Data” fields is shown, for the ASCII as well as for the RTU: in the ASCII mode this value is half of the total number of
the ASCII characters in the data (each hexadecimal value of 4 bits requires an ASCII character, therefore two ASCII
characters must be adjacent in the message in order to contain each 8-bit data item).
For example the 63 Hex value is transmitted as a 8-bit byte in RTU mode (01100011); the same value transmitted in ASCII
mode requires 2 bytes: for ASCII 6 (0110110) and 3 (0110011). The “Number of bytes” field contains this data an 8-bit item,
without taking into consideration the packing mode of the characters (ASCII or RTU).

DGT4 / DGTQ / DGT4AN / DGTQAN

8

 2. MODBUS FUNCTIONS
Each function is exposed in detail in the following pages and is made up of a QUERY (Master request Instrument) and a

RESPONSE (Instrument response Master).

NOTE:
o In the ASCII transmission mode:

Each character is an ASCII type character (made up of 8 bits).
o In the RTU transmission mode:

Each character is a Hexadecimal type of character (made up of 4 bits).

o With 0x or Hex before a number it means that it has to do with a hexadecimal value.

2.1. List of the supported Functions
In the following table there are the active Modbus functions for the DGT instrument.

Table 2.1: Active Modbus functions

Function Code Description
01 (0x01) READ COILS STATUS

03 (0x03) READ HOLDING REGISTERS

04 (0x04) READ INPUT REGISTERS

05 (0x02) PRESET SINGLE COIL

06 (0x06) PRESET SINGLE REGISTER

15 (0x0F) PRESET MULTIPLE COILS

16 (0x10) PRESET MULTIPLE REGISTERS

In the parentheses there are the hexadecimal values.

2.2. List of the Transmission Strings
In the following paragraphs the functions (shown in Table 2.1) supported by the instrument are described in detail; for this
purpose one uses the following classification for the message fields:

 Address: A = 1 byte for the instrument address (slave).
 Function: Code or Number of the function to be executed.
 Number of bytes: represents the number of bytes which make up a datum.
 Error Check (CRC / LRC): for the error check, in the RTU and in the ASCII transmission modes it’s always 2 bytes.

(CRC = “Cyclical Redundancy Check”, LRC = “Longitudinal Redundancy Check”; see Chapter 3)

Other fields for the message frames are described in detail in the various single functions.

NOTE:

 the following data are defined, on which the functions operate:

- "Coils Status": written by the Master read by the Instrument and the Master

- “Holding Registers”: written by the Master read by the Instrument and the Master

- "Input Registers": written by the Instrument read by the Master

 The Registers are described in detail in Chapter 5.

 The switch buffer is made of 100 bytes, therefore it is not possible to read a registers number that exceed the
transmission buffer capacity and it is not possible to write a registers number that exceed the reception buffer
capacity.

DGT4 / DGTQ / DGT4AN / DGTQAN

9

2.2.1. Functions 1,3 and 4: READ COILS STATUS / HOLDING / INPUT REGISTERS
(01,03 and 04 Hex)

They read the contents of the slave instrument’s registers (which the instrument or the master will write); the
broadcast communication is not supported.

Query:
One specify the registers / coils data area to read (Function), the Initial Register (1st Register Address) from which the
reading starts and the Number of Registers which must be read (Nr. of Registers). The registers are addressed from 0: in
this way the registers from 1 to 16 are addressed as 0 to 15.

Address Function Address 1st Register

 High Low

Nr. of Registers

 High Low

Error
Check

A XX 00 08 00 01 CRC / LRC

Response:
The response message is made up of 2 bytes for each read register, with the binary content aligned on the right in each
byte. For each register the first byte contains the most significant bits and the second byte contains the least significant bits.

Address Function Nr. of read bytes

 High Low

Value of registers

 High Low

Error
Check

A XX 02 00 0A CRC / LRC

Example: A = 01;
- in the Query: 1st Register address = 00 08; Number of Registers = 00 01
- in the Response: 1st Register = 00 0A

NOTE:
Maximum number of registers readable with one request: 49

2.2.2. Functions 5 and 6: PRESET COIL / SINGLE REGISTER (05 and 06 Hex)

It allows to set a single register (which the instrument or slave goes to read) to a determined value.
The broadcast transmission of this command is allowed and in which one can set the same register in all the
connected slaves.

Query:
One specify the register / coil data area to write (Function), the Register Address which must be set (Register Address) and
the relative Value (Register Value). The registers are addressed starting from 0: in this way the registers from 1 to 16 are
addressed as 0 to 15.

Address Function Address 1st Register

 High Low

Register Value

 High Low

Error
Check

A XX 00 01 00 03 CRC / LRC

Response:
It is the echo of the Query.

Address Function Address 1st Register

 High Low

Register Value

 High Low

Error
Check

A XX 00 01 00 03 CRC / LRC

Example: A = 01;
- in the Query: Register Address = 00 01; Register Value = 00 03
- in the Response: Register Address = 00 01; Register Value = 00 03

DGT4 / DGTQ / DGT4AN / DGTQAN

10

2.2.3. Function 15 and 16: PRESET MULTIPLE COILS / REGISTERS (0F and 16 Hex)

Allows to set various registers (which the instrument or slave goes to read) to a determined value.

Query:
One specify the registers / coils data area to write (Function), Here is specified the address of the First Register which must
be set (1st Register address), the Number of Registers to be written (Nr. of Registers) starting from the first, the number of
bytes transmitted for the values of the registers (2 bytes for each register) or Nr. of Bytes and then the values to be
assigned to the registers (1st Register value of 2 bytes, 2nd Register Value, etc.) starting from the first one addressed.

Address Function 1st Register
Address

High Low

Nr. of
Registers

High Low

Nr. of
bytes

1st Register
Value

 High Low

2nd Register
Value

 High Low

Error Check

A XX 00 00 00 02 04 00 00 00 00 CRC / LRC

Response:
The response includes the identification of the modified registers (1st Register address and Nr. of Registers).

Address Function Address 1st Register

 High Low

Nr. of Registers

High Low

Error Check

A XX 00 00 00 02 CRC / LRC

Example: A = 01;
- in the Query: 1st Register Address = 00 00; Nr. of Registers = 00 02; Nr. of bytes = 04;

1st Register Value = 00 00; 2nd Register Value = 00 00;
- in the Response: 1st Register Address = 00 00; Nr. or registers = 00 02;

NOTE:
Maximum number of registers writable with one request:

 RTU mode: 45

 ASCII mode: 20

2.3 Example of function

For that examples we’ll have a DGT-Q; capacity = 3000 kg; division = 1 kg; gross = 1000 kg; tare = 1500 kg; net = -500 kg.

 Read net weight:

Query:

Slave address Active function Address 1st register Number of registers Error check

0x01 0x04 0x0002 0x0002 0xD00B

Complete string: “00000001000001000000000000000010000000000000001011010000000010112”;
 “010400020002D00B16”;

Response:

Slave
Address

Active
function

Nr. bytes Value 1st register Value 2nd register Error check

0x01 0x04 0x04 0x0000 0x01F4 0xFB93

Value 1st register Value 2nd register
0000 0000 0000 0000 | 0000 0001 1111 01002 = 01F416 = 50010

DGT4 / DGTQ / DGT4AN / DGTQAN

11

 Read gross weight:
Query:

Slave address Active function Address 1st register Number of registers Error check

0x01 0x04 0x0000 0x0002 0x71CB

Complete string: “00000001000001000000000000000000000000000000001001110001110010112”;
 “01040000000271CB16”;

Response:

Slave
Address

Active
function

Nr. bytes Value 1st register Value 2nd register Error check

0x01 0x04 0x04 0x0000 0x03E8 0xFB3A

Value 1st register Value 2nd register
0000 0000 0000 0000 | 0000 0011 1110 10002 = 03E816 = 100010

 Read input status register:
Query:

Slave address Active function Address 1st register Number of registers Error check

0x01 0x04 0x0004 0x0001 0x700B

Complete string: “00000001000001000000000000000100000000000000000101110000000010112”;
 “010400040001700B16”

Response:

Slave Address Active function Nr. bytes Value 1st register Error check

0x01 0x04 0x02 0x0025 0x78EB

Value 1st register = 002516 = 3710 = 0000 0000 0010 01012

Bit Description
Bit meaning

0 1
Value 1st register

(LSB) (LSB)

0 Net Weight Polarity + -- 1 --

1 Gross Weight Polarity + -- 0 +

2 Weight Stability NO YES 1 YES

3 Underload Condition NO YES 0 NO

4 Overload Condition NO YES 0 NO

5 Entered Tare Condition NO YES 1 YES

6 Manual Tare Condition NO YES 0 NO

7 Gross ZERO zone Out of Zone 0 In Zone 0 0 Out of Zone 0

(MSB) (MSB)

8 Input 1 DISABLED ENABLED 0 DISABLED

9 Input 2 DISABLED ENABLED 0 DISABLED

10 Not used 0

11 Not used 0

12 Not used 0

13 Not used 0

14 Displayed channel (low bit) (1) 0

15 Displayed channel (high bit)(from 0 to 3) (1) 0

(1) : high Bit, low Bit: 0 0 Channel 1 0 1 Channel 2

 (15) (14) 1 0 Channel 3 1 1 Channel 4

DGT4 / DGTQ / DGT4AN / DGTQAN

12

 Execution of Scale Zero:
Query:

Slave address Active function Register address Register value Error check

0x01 0x06 0x0000 0x0001 0x480A

Complete string: “00000001000001100000000000000000000000000000000101001000000010102”;
 “010600000001480A16”;
If the command will be executed correctly, the indicator will return the Query as Response.

 Execution of automatic Tare:
Query:

Slave address Active function Register address Register value Error check

0x01 0x06 0x0000 0x0002 0x080B

Complete string: “00000001000001100000000000000000000000000000001000001000000010112”;
 “010600000002080B16”;
If the command will be executed correctly, the indicator will return the Query as Response.

 Execution of manual Tare:
Query:

Slave
address

Active
function

First register
address

Nr. Reg.
Nr.

bytes
1st Reg.
value

2nd Reg.
value

3rd Reg.
value

Error
check

0x01 0x10 0x0000 0x0003 0x06 0x0003 0x0000 0x01F4 0xA297

Complete string:
“0000000100010000000000000000000000000000000000110000011000000000000000110000000000000000000000
011111010010100010100101112”;
“011000000003060003000001F4A29716”;
 2nd Reg. value 3rd Reg. value
0000 0000 0000 0000 | 0000 0001 1111 01002 = 01F416 = 50010

Response:

Slave address Active function 1st Register address Nr. Registers Error check

0x01 0x10 0x0000 0x0003 0x8008

For zero, automatic tare and manual tare command, ref. Command Register

DGT4 / DGTQ / DGT4AN / DGTQAN

13

 Set setpoint 1 ON permanent:
Query:

Slave
address

Active
function

First register
address

Nr. Registers Nr. bytes 1st Reg. value 2nd Reg. value Error check

0x01 0x10 0x0083 0x0002 0x04 0x0000 0x0866 0x03C30

 1st Reg. value 2nd Reg. value
0000 0000 0000 0000 | 0000 1000 0110 01102 = 086616 = 215010

Complete string:
“0000000100010000000000001000001100000000000000100000010000000000000000000000100001100110001111
00001100002”;
“01100083000204000008663C3016”;

Response:

Slave address Active function 1st Register address Nr. Registers Error check

0x01 0x10 0x0083 0x0002 0xB020

3. ERROR CHECK METHODS
The Modbus serial communication uses two error check types:

 Check on the character or parity (even or uneven), can be applied optionally to each character (see Par. 1.3, Data
Format).

 Check on the frame (LRC or CRC algorithms), applied to the entire message.
The communication strings are checked by a CRC (Cyclical Redundancy Check) type algorithm in the case of binary
(rtu) and the LRC type (Longitudinal Redundancy Check) for the ASCII communication.

Both the check on the character as well as the one on the frame of the message is created in the Master and applied to the
contents of the message before the transmission. The Slave checks each character and the entire frame of the message
during the reception.

3.1. Parity Check
It is possible to configure the parity check in the following way (see Par. 1.3):

n no parity (none)
E even parity (Even)

This determines how the parity is set in each character.

DGT4 / DGTQ / DGT4AN / DGTQAN

14

3.2. CRC algorithm: Cyclical Redundancy Check (RTU
mode)
In the RTU transmission mode, the messages include an error check field based on a CRC method, which checks the
contents of the entire message and is applied without any regard to any parity method used for the single characters. The
CRC field is made up of 2 bytes (containing a binary value of 16 bits) and is calculated from the transmitting device, which
puts the CRC at the end of the message. The receiving device calculates again the CRC during the reception of the
message, and compares the calculated value with the actual value received in the CRC field. If the two values are not the
same an error has taken place.

3.2.1. A procedure for creating the CRC is the following:
1. Loading a 16-bit register with FFFF Hex (all 1). This register is called Register CRC

2. OR-exclusive with the first byte of the message and the least significant byte of the CRC Register at 16 bit.
 The result is inserted in the CRC register.

3. The CRC Register is shifted of 1 bit to the right (towards the LSB), a 0 is inserted in the place of the MSB. The LSB is
extracted and examined.

4. If LSB = 0 Step 3 is to be repeated. (another shift)

If LSB = 1 The OR-ex is made between the CRC Register and the A001 Hex (1010 0000 0000 0001) polynomial
value.

5. Steps 3. and 4. are repeated until 8 shifts have been made; after this a byte of 8 bits have been completely processed.

6. Steps 2 to 5 are repeated for the next byte of 8 bits of the message.
 One continues until all the bytes are processed.

7. The final contents of the CRC Register are the CRC Value.

8. When the CRC is inserted within the message, its bytes (high and low) must be exchanged as described below.

3.2.2. Placing of the CRC in the message:
When the 16 bits of the CRC (2 bytes) are transmitted in the message, the least significant byte must be transmitted first,
followed by the most significant byte.

For example, if the CRC value is 1241 Hex (0001 0010 0100 0001):

Addr Func Data
Count

Data Data Data Data CRC

LOW
CRC

HIGH

Fig. 5: Sequence of the CRC bytes.

3.2.3. Example in C Language of the CRC creation
A functioning example for the creation of the CRC in the C language is shown below.

NOTE: The function creates internally the swapping of the high and low bytes of the CRC. The bytes are already
exchanged in the CRC value which is given back by the function, which can then be placed directly in the message
for the transmission.

The function uses two arguments:

unsigned char *puchMsg; A pointer to the message buffer which contains the binary data to be used for

creating the CRC for generating the CRC

unsigned short usDataLen; The quantity of bytes in the message buffer

The function gives back the CRC value as an unsigned short.

 41 12

DGT4 / DGTQ / DGT4AN / DGTQAN

15

CRC generation function

unsigned short CRC16(puchMsg, usDataLen)

unsigned char *puchMsg; //message to calculate CRC upon

unsigned short usDataLen; //quantity of bytes in message

{

unsigned char uchCRCHi = 0xFF; //high CRC byte initialized

unsigned char uchCRCLo = 0xFF; //low CRC byte initialized

unsigned uIndex; //will index into CRC lookup table

while (usDataLen--) //pass through message buffer

{

uIndex = uchCRCHi ^ *puchMsg++; //calculate the CRC

uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex];

uchCRCLo = auchCRCLo[uIndex];

}

return (uchCRCHi << 8 | uchCRCLo);

}

3.3. LRC algorithm: Longitudinal Redundancy Check
(ASCII mode)
In the ASCII transmission mode the messages include an error check field based on an LRC method which checks the
contents of the message, except for the initial character (: or colours) and the two CRLF characters. The algorithm is
applied without taking into consideration of any parity check method used for the single characters of the message.
The LRC field is of one byte and contains a binary value of 8 bits which is calculated by the transmitting device, which puts
the LRC at the end of the message. The receiving device calculates a LRC during the reception and compares the
calculated value with the actual value received in the LRC field. If the two values are not the same an error is shown.

The LRC is calculated by then summing together the bytes (8 bit) of the message, discarding the carry values and then
making the complement at 2 of the result. It uses the contents of the ASCII message fields, with the exception of the (:)
character which starts the message and the two CRLF characters which end it.

3.3.1. A procedure for creating the LRC is the following:
1. Sum all the bytes of the message, excluding the (:) character and the CRLF, within the 8-bit field. In this way the carry

values are discarded.

2. Subtract the resulting value from step 1. to FF Hex (8 bits all at 1), obtaining in this way the Complement to 1.

3. Add 1 to obtain the Complement to 2.

3.3.2. Placing of the LRC in the message:
When the 8 bits of the LRC (2 ASCII characters) are transmitted in the message, the most significant character must be
transmitted first, followed by the least significant one.

For example, if the LRC value is 61 Hex (0110 0001):

Colon
(:)

Addr Func Data
Count

Data Data Data Data LRC

HIGH
LRC

LOW

CR LF

Fig. 6: Sequence of the LRC bytes.

 6 1

DGT4 / DGTQ / DGT4AN / DGTQAN

16

3.3.3. Example in the C language for creating the LRC
A functioning example for creating the LRC in the C language is shown below. The function uses two arguments:

unsigned char *auchMsg; A pointer to the message buffer which contains the binary data to be used for

creating the LRC

unsigned short usDataLen; Quantity of bytes in the message buffer

The function gives back the LRC value as an unsigned char.

LRC creation function

static unsigned char LRC(auchMsg, usDataLen)

unsigned char *auchMsg; //message to calculate

unsigned short usDataLen; //LRC upon quantity of bytes in message

{

unsigned char uchLRC = 0; //LRC char initialized

while (usDataLen--) //pass through message

uchLRC += *auchMsg++; //buffer add buffer byte without carry

return((unsigned char)(-((char_uchLRC)));//return twos complement

}

4. MODBUS EXCEPTIONS
In a normal response (Normal Response) the Slave device echoes the Function Code of the Query, putting it in the
Response Function field. All the function codes have their own most significant bit (MSB) set at 0 (values less than 80 Hex).
In an exception response (Exception Response) the slave sets the MSB of the Function Code at 1 (equivalent to summing
the value 80 Hex to the normal response code) in order to signal that an anomaly has taken place, and the Exception Code
is given back in the Data Field, in order to indicate the type of exception.

4.1. List of the detected Exceptions

Table 4.1: Active Modbus exceptions

Code

Exception

Description

01

Illegal Function

The Function Code received by the Query is not supported or not
valid

02

 Illegal Data Address

The Data Address received in the Query is not an address
supported by the Slave Device or is not valid

03

Illegal data Value

A Value in the Data field of the Query is not a value acceptable by
the Slave device or is not valid

06

 Slave Device Busy

The Slave is busy in processing a command which requires a lot
of time. The Master can transmit again the message later, when
the Slave is free

DGT4 / DGTQ / DGT4AN / DGTQAN

17

5. DATA AREAS
There are 3 data areas, "Input", "Holding" and "Coils", defined this way due to the master’s point of view: while the "Input"
area is read by this device, the "Holding" and "Coils" ones are written.
The first 2 areas are organised in registers on which the Modbus protocol functions perform.
All the numeric values have the Big Endian format (the 1st byte is the most significant one) for the Data Input Area and the
Data Output Area, while these have the Little Endian format (the 1st byte is the least significant one) for the SETUP area.

5.1. Input Registers data area
The input data area is read by the master (is therefore written by the instrument) and is made up of registers (input
registers), of 2 bytes.

Table 5.1: Modbus Input Registers

Reg. Nr. Input Registers

30001 (0) Gross Weight Value (byte 3)

 Gross Weight Value (byte 2)

30002 (1) Gross Weight Value (byte 1)

 Gross Weight Value (byte 0)

30003 (2) Net Weight Value (byte 3)

 Net Weight Value (byte 2)

30004 (3) Net Weight Value (byte 1)

 Net Weight Value (byte 0)

- Format of the GROSS WEIGHT and NET WEIGHT value
Whole in absolute value (without decimals)
Example: if 3 decimals are set, the value 3,000 is read 3000

If 2 decimals are set, the value 3,00 is read 300

30005 (4) Input Status Register (MSB)

 Input Status Register (LSB)

30006 (5) Command Status Register (MSB)

 Command Status Register (LSB)

30007 (6) Output Status Register (MSB)

 Output Status Register (LSB)

- Format of the Input Status Register value
See 5.1.1 section

- Format of the Command Status Register value
See 5.1.3 section

- Format of the Output Status Register value
See 5.1.2 section

DGT4 / DGTQ / DGT4AN / DGTQAN

18

30008 (7) Nr. of last page read or written (MSB)

 Nr. of last page read or written (LSB)

30009 (8) 1st set-up page word

 1st set-up page word

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

30016 (15) 8th set-up page word

 8th set-up page word

30101 (100) Software Vers. ("00") (byte 3)

 Software Vers. (release) (byte 2)

30102 (101) Software Vers. (sub release) (byte 1)

 Software Vers. (bug release) (byte 0)

- Format of the Software Version (registers 100÷101)
Whole in absolute value (without points)
Example: the software version 05.06.00 is read 00050600

30103 (102) ADC points channel 1 (byte 3)

 ADC points channel 1 (byte 2)

30104 (103) ADC points channel 1 (byte 1)

 ADC points channel 1 (byte 0)

30105 (104) ADC points channel 2 (byte 3)

 ADC points channel 2 (byte 2)

30106 (105) ADC points channel 2 (byte 1)

 ADC points channel 2 (byte 0)

30107 (106) ADC points channel 3 (byte 3)

 ADC points channel 3 (byte 2)

30108 (107) ADC points channel 3 (byte 1)

 ADC points channel 3 (byte 0)

30109 (108) ADC points channel 4 (byte 3)

 ADC points channel 4 (byte 2)

30110 (109) ADC points channel 4 (byte 1)

 ADC points channel 4 (byte 0)

30111 (110) Microvolts channel 1 (byte 1)

 Microvolts channel 1 (byte 0)

30112 (111) Microvolts channel 2 (byte 1)

 Microvolts channel 2 (byte 0)

30113 (112) Microvolts channel 3 (byte 1)

 Microvolts channel 3 (byte 0)

30114 (113) Microvolts channel 4 (byte 1)

 Microvolts channel 4 (byte 0)

30115 (114) Analogic output value (byte 1)

 Analogic output value (byte 0)

- Available ADC points and microvolts (registers 102÷114):
In Dependent channels and Transm modes ADC and μV values for more channels are available.
In Independent channels mode the values of one channel only are available, other registers are equal to zero.
The registers related to non configured channels are equal to zero.

DGT4 / DGTQ / DGT4AN / DGTQAN

19

5.1.1. Input Status Register (Table 5.1.1)
It is Input Register number 4; two bytes defined in the following way:

Bit Description Bit meaning
 0 1

(LSB)

0 Net Weight Polarity + --

1 Gross Weight Polarity + --

2 Weight Stability NO YES

3 Underload Condition NO YES

4 Overload Condition NO YES

5 Entered Tare Condition NO YES

6 Manual Tare Condition NO YES

7 Gross ZERO zone Out of Zone 0 In Zone 0

(MSB)

8 Input 1 DISABLED ENABLED

9 Input 2 DISABLED ENABLED

10 Not used

11 Not used

12 Not used

13 Not used

14 Displayed channel (low bit) (1)

15 Displayed channel (high bit)(from 0 to 3) (1)

(1) : high Bit, low Bit: 0 0 Channel 1 0 1 Channel 2

 (15) (14) 1 0 Channel 3 1 1 Channel 4

5.1.2. Output Status Register (Table 5.1.2)
It is Input Register number 6; two bytes defined in the following way:

Bit Description Bit meaning
 0 1

(LSB)

0 RELAY 1 NOT EXCITED EXCITED

1 RELAY 2 NOT EXCITED EXCITED

2 RELAY 3 NOT EXCITED EXCITED

3 RELAY 4 NOT EXCITED EXCITED

4 RELAY 5 NOT EXCITED EXCITED

5 RELAY 6 NOT EXCITED EXCITED

6 Not used

7 Not used

(MSB)

8 Not used

9 Not used

10 Not used

11 Not used

12 Not used

13 Not used

14 Not used

15 Not used

DGT4 / DGTQ / DGT4AN / DGTQAN

20

5.1.3. Command Status Register
It is Input Register number 5; two bytes defined in the following way:

High Byte Last received command (see Table 5.2.1)

Low Byte: low nibble Counting of processed commands (module 16)

 high nibble Result of last received command

In which the Result of the last received command can assume the following values:
 OK = 0 Corrected and executed command
 ExceptionCommandWrong = 1 Incorrect command
 ExceptionCommandData = 2 Data in the incorrect command
 ExceptionCommandNotAllowed = 3 Command not allowed
 ExceptionNoCommand = 4 Inexistent command

5.2. Holding Registers data area:
The "Holding" data area is written by the master (is therefore read by the instrument) and is made up of registers (holding
registers), of 2 bytes.

Table 5.2: Modbus Holding Registers

Reg. Nr. Holding Registers

40001 (0) Command Register (MSB)

 Command Register (LSB)

40002 (1) Parameter 1 (byte 3)

 Parameter 1 (byte 2)

40003 (2) Parameter 1 (byte 1)

 Parameter 1 (byte 0)

40004 (3) Parameter 2 (byte 3)

 Parameter 2 (byte 2)

40005 (4) Parameter 2 (byte 1)

 Parameter 2 (byte 0)

40006 (5) Not used

 Not used

40007 (6) Not used

 Not used

40008 (7) Not used

 Not used

DGT4 / DGTQ / DGT4AN / DGTQAN

21

- Format of the Command Register value
See 5.2.1 section

40009 (8) 1st set-up page word

 1st set-up page word

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

40016 (15) 8th set-up page word

 8th set-up page word

40101 (100) Gross Weight Value (byte 3)

 Gross Weight Value (byte 2)

40102 (101) Gross Weight Value (byte 1)

 Gross Weight Value (byte 0)

40103 (102) Net Weight Value (byte 3)

 Net Weight Value (byte 2)

40104 (103) Net Weight Value (byte 1)

 Net Weight Value (byte 0)

40105 (104) Tare Weight Value (byte 3)

 Tare Weight Value (byte 2)

40106 (105) Tare Weight Value (byte 1)

 Tare Weight Value (byte 0)

- Format of the GROSS WEIGHT, NET WEIGHT and TARE WEIGHT value
Whole in absolute value (without decimals)
Example: if 3 decimals are set, the value 3,000 is read 3000

If 2 decimals are set, the value 3,00 is read 300

40107 (106) Input Status Register (MSB)

 Input Status Register (LSB)

40108 (107) Output Status Register (MSB)

 Output Status Register (LSB)

- Format of the Input Status Register value
See 5.1.1 section

- Format of the Output Status Register value
See 5.1.2 section

Setpoint DGT Family

N°Reg. Holding Registers

40109 (108) Setpoint 1 ON temporary (byte 3)

 Setpoint 1 ON temporary (byte 2)

40110 (109) Setpoint 1 ON temporary (byte 1)

 Setpoint 1 ON temporary (byte 0)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

40119 (118) Setpoint 6 ON temporary (byte 3)

 Setpoint 6 ON temporary (byte 2)

40120 (119) Setpoint 6 ON temporary (byte 1)

 Setpoint 6 ON temporary (byte 0)

40121 (120) Setpoint 1 OFF temporary (byte 3)

DGT4 / DGTQ / DGT4AN / DGTQAN

22

 Setpoint 1 OFF temporary (byte 2)

40122 (121) Setpoint 1 OFF temporary (byte 1)

 Setpoint 1 OFF temporary (byte 0)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

40131 (130) Setpoint 6 OFF temporary (byte 3)

 Setpoint 6 OFF temporary (byte 2)

40132 (131) Setpoint 6 OFF temporary (byte 1)

 Setpoint 6 OFF temporary (byte 0)

40133 (132) Setpoint 1 ON permanent (byte 3)

 Setpoint 1 ON permanent (byte 2)

40134 (133) Setpoint 1 ON permanent (byte 1)

 Setpoint 1 ON permanent (byte 0)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

40143 (142) Setpoint 6 ON permanent (byte 3)

 Setpoint 6 ON permanent (byte 2)

40144 (143) Setpoint 6 ON permanent (byte 1)

 Setpoint 6 ON permanent (byte 0)

40145 (144) Setpoint 1 OFF permanent (byte 3)

 Setpoint 1 OFF permanent (byte 2)

40146 (145) Setpoint 1 OFF permanent (byte 1)

 Setpoint 1 OFF permanent (byte 0)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

40155 (154) Setpoint 6 OFF permanent (byte 3)

 Setpoint 6 OFF permanent (byte 2)

40156 (155) Setpoint 6 OFF permanent (byte 1)

 Setpoint 6 OFF permanent (byte 0)

NOTE: no controls are executed:
- if the value is <= capacity
- off value <= on value
The less significant word value is cut to the minimum scale division.

Weight in Transm mode

N°Reg. Holding Registers

40201 (200) Configured channels number (byte 1)

 Configured channels number (byte 0)

40202 (201) Channel 1 Status Register (MSB)

 Channel 4 Status Register (LSB)

40203 (202) Weight value Channel 1 (byte 3)

 Weight value Channel 1 (byte 2)

40204 (203) Weight value Channel 1 (byte 1)

 Weight value Channel 1 (byte 0)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

40211 (210) Channel 4 Status Register (MSB)

 Channel 4 Status Register (LSB)

40212 (211) Weight value Channel 4 (byte 3)

DGT4 / DGTQ / DGT4AN / DGTQAN

23

 Weight value Channel 4 (byte 2)

40213 (212) Weight value Channel 4 (byte 1)

 Weight value Channel 4 (byte 0)

- Format of the Channel X Status Register value
See 5.2.2 section

- Format of the WEIGHT value
Whole in absolute value (without decimals)
Example: if 3 decimals are set, the value 3,000 is read 3000

If 2 decimals are set, the value 3,00 is read 300

Commands

N°Reg. Holding Registers

40231 (230) Command Status Register (MSB)

 Command Status Register (LSB)

40232 (231) Command Register (MSB)

 Command Register (LSB)

40233 (232) Commands Parameters

 Commands Parameters

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

40236 (235) Commands Parameters

 Commands Parameters

- Format of the Command Status Register value
See 5.1.3 section

- Format of the Command Register value
See 5.2.1 section

Alibi memory

N°Reg. Holding Registers

40251 (250) Last stored gross weigh (byte 3)

 Last stored gross weigh (byte 2)

40252 (251) Last stored gross weigh (byte 1)

 Last stored gross weigh (byte 0)

40253 (252) Last stored tare weigh (byte 3)

 Last stored tare weigh (byte 2)

40254 (253) Last stored tare weigh (byte 1)

 Last stored tare weigh (byte 0)

40255 (254) Last weigh id value (byte 3)

 Last weigh id value (byte 2)

40256 (255) Last weigh id value (byte 1)

 Last weigh id value (byte 0)

40257 (256) Alibi status register (MSB)

 Alibi status register (LSB)

DGT4 / DGTQ / DGT4AN / DGTQAN

24

- Format of the Alibi status register value:
See 5.2.1.1 section

Setup

N°Reg. Holding Registers

40301 (300) 1st set-up word (page 0)

 1st set-up word (page 0)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

40308 (307) 8th set-up word (page 0)

 8th set-up word (page 0)

40309 (308) 9th set-up word (page 1)

 9th set-up word (page 1)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

40812 (811) Last set-up word (page 64)

 Last set-up word (page 64)

- Format of the words value:
See 5.2.3 section

Weight in one word (less significant word) and status repetition

41101 (1100) Gross weight value (byte 1)

 Gross weight value (byte 0)

41102 (1101) Net weight value (byte 1)

 Net weight value (byte 0)

41103 (1102) Tare weight value (byte 1)

 Tare weight value (byte 0)

- Format of the GROSS WEIGHT, NET WEIGHT and TARE WEIGHT value
Whole in absolute value (without decimals)
Example: if 3 decimals are set, the value 3,000 is read 3000

If 2 decimals are set, the value 3,00 is read 300

41104 (1103) Input Status Register (MSB)

 Input Status Register (LSB)

41105 (1104) Output Status Register (MSB)

 Output Status Register (LSB)

- Format of the Input Status Register value
See 5.1.1 section

- Format of the Output Status Register value
See 5.1.2 section

DGT4 / DGTQ / DGT4AN / DGTQAN

25

Setpoint DGTQ Family in one word (less significant word)

N°Reg. Holding Registers

41106 (1105) Setpoint 1 ON temporary (byte 1)

 Setpoint 1 ON temporary (byte 0)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

41111 (1110) Setpoint 6 ON temporary (byte 1)

 Setpoint 6 ON temporary (byte 0)

41112 (1111) Setpoint 1 OFF temporary (byte 1)

 Setpoint 1 OFF temporary (byte 0)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

41117 (1116) Setpoint 6 OFF temporary (byte 1)

 Setpoint 6 OFF temporary (byte 0)

41118 (1117) Setpoint 1 ON permanent (byte 1)

 Setpoint 1 ON permanent (byte 0)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

41123 (1122) Setpoint 6 ON permanent (byte 1)

 Setpoint 6 ON permanent (byte 0)

41124 (1123) Setpoint 1 OFF permanent (byte 1)

 Setpoint 1 OFF permanent (byte 0)

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

41129 (1128) Setpoint 6 OFF permanent (byte 1)

 Setpoint 6 OFF permanent (byte 0)

NOTE: no controls are executed:
- if the value is <= capacity
- off value <= on value
The less significant word value is cut to the minimum scale division.

Weights in Transm mode

N°Reg. Holding Registers

41201 (1200) Configured channels number (byte 1)

 Configured channels number (byte 0)

41202 (1201) Channel 1 Status Register (MSB)

 Channel 1 Status Register (LSB)

41203 (1202) Weight value Channel 1 (byte 1)

 Weight value Channel 1 (byte 0)

41204 (1203) Channel 2 Status Register (MSB)

 Channel 2 Status Register (LSB)

41205 (1204) Weight value Channel 2 (byte 1)

 Weight value Channel 2 (byte 0)

41206 (1205) Channel 3 Status Register (MSB)

 Channel 3 Status Register (LSB)

41207 (1206) Weight value Channel 3 (byte 1)

 Weight value Channel 3 (byte 0)

DGT4 / DGTQ / DGT4AN / DGTQAN

26

41208 (1207) Channel 4 Status Register (MSB)

 Channel 4 Status Register (LSB)

41209 (1208) Weight value Channel 4 (byte 1)

 Weight value Channel 4 (byte 0)

- Format of the Channel X Status Register value
See 5.2.2 section

- Format of the WEIGHT value
Whole in absolute value (without decimals)
Example: if 3 decimals are set, the value 3,000 is read 3000

If 2 decimals are set, the value 3,00 is read 300

5.2.1. Command Register
It is the Output Register number 0. It is made up of two bytes and can take on the following values, which correspond to
implemented commands described in table 5.2.1.

Execution of a Command
The execution of a command happens when the contents of the Command Register vary (therefore to repeat the last
command one should first set the Command register at the NO COMMAND value, and then at the command value).

MODES OF OPERATION:

Read only if the instrument is legal for trade (only for DGT 4)

Register Data
40971 Instrument type

0 = independent channel

1 = dependent channel

2 = Transm
40972 Number of channel

When the register 40972 is written the instrument stores the instrument type and the set number of channels and restarts to start to

work in the new selected mode.

Table 5.2.1: Command Register

Implemented Command Command
Register Value

Description

NO_COMMAND 0 (0000 Hex) NO COMMAND

ZERO_REQUEST 1 (0001 Hex) Execution of SCALE ZERO

TARE_REQUEST 2 (0002 Hex) Execution of AUTOMATIC TARE

TAREMAN_REQUEST 3 (0003 Hex) Execution of MANUAL TARE
(the value is to be entered in Parameter 1 (2))

NET_SWITCH_REQUEST 4 (0004 Hex) Display switching onto the NET WEIGHT (3)

GROSS_SWITCH_REQUEST 5 (0005 Hex) Display switching on the GROSS WEIGHT (3)

CHANNEL_1_REQUEST 6 (0006 Hex) Switching onto CHANNEL 1

CHANNEL_2_REQUEST 7 (0007 Hex) Switching onto CHANNEL 2

CHANNEL_3_REQUEST 8 (0008 Hex) Switching onto CHANNEL 3

CHANNEL_4_REQUEST 9 (0009 Hex) Switching onto CHANNEL 4

SET_OUTPUT 25 (0019 Hex) RELAY setting (4)

READ_ALIBI 30 (001E Hex) WEIGH READING ON ALIBI TROUGH SETUP PAGE (HOLDING
REGISTERS 8-15) (5)

WRITE_ALIBI 31 (001F Hex) STORAGE OF WEIGH ON ALIBI

DGT4 / DGTQ / DGT4AN / DGTQAN

27

HOLD_PEAK_WEIGHT 32 (0020 Hex) BLOCK THE WEIGHT ON THE DISPLAY

UNLOCK_WEIGHT 33 (0021 Hex) AFTER SECOND HOLD_ PEAK_WEIGHT ALLOWS TO UNLOCK

THE WEIGHT ON THE DISPLAY AND TO SEE THE EFFECTIVE
RESTART_INSTRUMENT 34 (0022 Hex) RESTART THE INSTRUMENT

READ CALIBRATION 35 (0023 Hex) COPY OF CALIBRATION DATA OF THE CHANNEL EQUAL TO
PARAMETER 1 INTO TEMPORARY AREA

WRITE_CALIBRATION 36 (0024Hex) STORE OF TEMPORARY DATA INTO CALIBRATION DATA
(NON VOLATILE MEMORY)

POINT_ACQUISITION 37 (0025 Hex) PARAMETER 1 IS THE POINT TO ACQUIRE

ABORT_CALIBRATION 38 (0026 Hex) ABORT THE CALIBRATION UNDER WAY

NUMBER_OF_PIECES 41 (0029 Hex) COUNTING WITH PARAMETER 1 THAT IS THE
NUMBER OF PIECES

APW 42 (002A Hex) INSERT INPUT APW

PMU 43 (002B Hex) COMMAND PMU WITH PARAMETER 1 THAT IS THE
AVERAGE PIECE WEIGHT

(2) NOTE: Format of the Parameter 1 and Parameter 2 values:

 For the MANUAL TARE (only Param1):

Example: if 3 decimals are set, in order to enter the value 3,000 one should write 3000

If 2 decimals are set, in order to enter the value 3,00 one should write 300

(3): functions active only in NTGS mode (net/gross switch).

(4) RELAY setting
The status of the relays is settable through Parameter 1:

Parameter 1:

bit 0 RELAY 1 in which bit 0 = 1 RELAY 1 CLOSED; bit 0 = 0 RELAY 1 OPEN

bit 1 RELAY 2 in which bit 1 = 1 RELAY 2 CLOSED; bit 1 = 0 RELAY 2 OPEN
OPTIONAL RELAYS (ONLY DGTQ PB)

bit 2 RELAY 3 in which bit 2 = 1 RELAY 3 CLOSED; bit 2 = 0 RELAY 3 OPEN

bit 3 RELAY 4 in which bit 3 = 1 RELAY 4 CLOSED; bit 3 = 0 RELAY 4 OPEN

bit 4 RELAY 5 in which bit 4 = 1 RELAY 5 CLOSED; bit 4 = 0 RELAY 5 OPEN

bit 5 RELAY 6 in which bit 5 = 1 RELAY 6 CLOSED; bit 5 = 0 RELAY 6 OPEN
bit 6 ÷15 (not used)

NOTES:
 Format of Parameter 1 and Parameter 2 Values for the RELAYS:

 Bit configuration

 In the case a relay is linked to a set point, the command relative to that relay is ignored.

 The writing of the set point values does not cause the automatic saving in flash; these are only temporarily set. To save
these in flash one should execute the WRITE_FLASH command.

(5) WEIGH READING ON ALIBI
To read a weigh stored in the ALIBI trough setup page (Holding Registers 8-15), set the rewriting number in Parameter 1
and the weigh number (ID) in Parameter 2.

DGT4 / DGTQ / DGT4AN / DGTQAN

28

Format of the Parameter 1 and Parameter 2 values:
Whole in absolute value (without decimals)

Table 5.2.1.A: CONTENTS OF SETUP PAGE WITH READING ALIBI COMMAND

Input Data Area

(N° Byte)

Description

A
L

IB
I P

A
G

E

(1
6

by
te

s)

16 Stored gross weight value (byte 3)

17 Stored gross weight value (byte 2)

18 Stored gross weight value (byte 1)

19 Stored gross weight value (byte 0)

20 Stored tare weight value (byte 3)

21 Stored tare weight value (byte 2)

22 Stored tare weight value (byte 1)

23 Stored tare weight value (byte 0)

24 ID: Weigh number (byte 3)

25 ID: Weigh number (byte 2)

26 ID: Weigh number (byte 1)

27 ID: Weigh number (byte 0)

28 Alibi status register (MSB)

29 Alibi status register (LSB)

30 Not used

31 Not used

5.2.1.1. Alibi Status Register
It is the Holding Register number 7 after the READING ALIBI command execution; two bytes defined in the following way:

BIT MEANING

bit from 7 to 0 Number of rewritings (from 0 to 255).

bit from 10 to 8 Number of scale (from 1 to 4).

bit 11 Type of tare; bit 11 = 1 manual tare; bit 1 = 0 null or semiautomatic tare

bit 12 Not used

bit 13 Not used

bit 14 Not used

bit 15 Not used

NOTE:
It is possible to read the last stored weigh trough the Holding registers from 250 to 256.

DGT4 / DGTQ / DGT4AN / DGTQAN

29

(7) TRANSM MODE

Ability to perform zero / tare on any channel remotely via Modbus / Profibus.

Modbus Holding Registers 40202 to 40213 have the gross weights now.

New Modbus Holding Registers:

REGISTER DATA

40214 Ch 1 net weight (byte 3,2)

40215 Ch 1 net weight (byte 1,0)

40216 Ch 2 net weight (byte 3,2)

40217 Ch 2 net weight (byte 1,0)

40218 Ch 3 net weight (byte 3,2)

40219 Ch 3 net weight (byte 1,0)

40220 Ch 4 net weight (byte 3,2)

40221 Ch 4 net weight (byte 1,0)

40222 Ch 1 tare weight (byte 3,2)

40223 Ch 1 tare weight (byte 1,0)

40224 Ch 2 tare weight (byte 3,2)

40225 Ch 2 tare weight (byte 1,0)

40226 Ch 3 tare weight (byte 3,2)

40227 Ch 3 tare weight (byte 1,0)

40228 Ch 4 tare weight (byte 3,2)

40229 Ch 4 tare weight (byte 1,0)

1 word weights:

REGISTER DATA

41210 Ch 1 net weight (byte 1,0)

41211 Ch 2 net weight (byte 1,0)

41212 Ch 3 net weight (byte 1,0)

41213 Ch 4 net weight (byte 1,0)

41214 Ch 1 tare weight (byte 1,0)

41215 Ch 2 tare weight (byte 1,0)

41216 Ch 3 tare weight (byte 1,0)

41217 Ch 4 tare weight (byte 1,0)

DGT4 / DGTQ / DGT4AN / DGTQAN

30

New bits in the channel x status register:

BIT DESCRIPTION 0 1

0 Gross weight polarity + -

1 Stability No yes

2 Underload condition No yes

3 Overload condition No yes

4 Gross weight zero zone No yes

5 Net weight polarity + -

6 Tare active No yes

7 Preset Tare active No yes

(9) COUNTER MODE

Modbus Input Registers (valid in pcs counter mode):

REGISTRO DATO
30117 Set APW decimals

30118 Set APW unit (0=g , 1=kg , 2=t , 3=lb)

30119 Pcs value (byte 3,2)

30120 Pcs value (byte 1,0)

30121 APW value (byte 3,2)

30122 APW value (byte 1,0)

Modbus Holding Registers (only in count mode) to set directly APW value:

REGISTRO DATA

41301 APW value (byte 3,2)

41302 APW value (byte 1,0)

Value is to be inserted as a fixed point value with a number of decimals equal to dec.APW parameter and in the

UM.APW unit.

Example: unit = g, decimals = 5, to set 15.125 g as APW set the value 1512500 (higher bytes = 23, lower bytes

= 5172).

DGT4 / DGTQ / DGT4AN / DGTQAN

31

5.2.2. Channel X Status Register (Table 5.2.2)

Bit Description Bit meaning
 0 1

(LSB)

0 Weight Polarity + --

1 Weight Stability NO YES

2 Underload Condition NO YES

3 Overload Condition NO YES

4 Gross ZERO zone Out of Zone 0 In Zone 0

5 Not used

6 Not used

7 Not used

(MSB)

8 Not used

9 Not used

10 Not used

11 Not used

12 Not used

13 Not used

14 Not used

15 Not used

5.2.3. SET-UP AREA
The set-up area is that which is memorised in flash (1024 bytes) and is made up of 64 pages (from 0 to 63).
With an approved instrument it’s not possible to write the metric parameters, between page 0 and the first half of page 38. It
is possible to write only the data between the second half of page 38 and page 63.
By writing one of the pages between 0 and 37 when the instrument is approved the result of the command is
ExceptionCommandNotAllowed, by writing instead the others one obtains the CommandOk. Page 38, in any case is not
completely copied, but only the second half of it.

DGT4 / DGTQ / DGT4AN / DGTQAN

32

N°Reg. Holding
Registers

Description

A
re

a
S

et
u

p
:

P
A

G
E

 5

(1
6

by
te

s)

340

341

342

Byte 0 RANGE 1 channel 1 (LSB)

343 Byte 1 RANGE 1 channel 1

Byte 2 RANGE 1 channel 1

344 Byte 3 RANGE 1 channel 1 (MSB)

Byte 0 RANGE 2 channel 1 (LSB)

345 Byte 1 RANGE 2 channel 1

Byte 2 RANGE 2 channel 1

346 Byte 3 RANGE 2 channel 1 (MSB)

347

A
re

a
S

et
u

p
:

P
A

G
E

 6

(1
6

by
te

s)

348

Byte 0 RANGE 1 channel 1 Division (LSB)

349 Byte 1 RANGE 1 channel 1 Division (MSB)

Byte 0 RANGE 2 channel 1 Division (LSB)

350 Byte 1 RANGE 2 channel 1 Division (MSB)

351

 Channel 1 Decimals

352 Channel 1 Unit of Measure (5)

353

354

355

DGT4 / DGTQ / DGT4AN / DGTQAN

33

N°Reg. Holding
Registers

Description

A
re

a
S

et
u

p
:

P
A

G
E

 1
4

(1
6

by
te

s)

412 Byte 0 RANGE 1 channel 2 (LSB)

Byte 1 RANGE 1 channel 2

413 Byte 2 RANGE 1 channel 2

Byte 3 RANGE 1 channel 2 (MSB)

414 Byte 0 RANGE 2 channel 2 (LSB)

Byte 1 RANGE 2 channel 2

415 Byte 2 RANGE 2 channel 2

Byte 3 RANGE 2 channel 2 (MSB)

416

417

418 Byte 0 RANGE 1 channel 2 Division (LSB)

Byte 1 RANGE 1 channel 2 Division (MSB)

419 Byte 0 RANGE 2 channel 2 Division (LSB)

Byte 1 RANGE 2 channel 2 Division (MSB)

A
re

a
S

et
u

p
:

P
A

G
E

 1
5

(1
6

by
te

s)

420

421 Channel 2 Decimals

 Channel 2 Unit of Measure (5)

422

423

424

425

426

427

A
re

a
S

et
u

p
:

P
A

G
E

 2
2

(1
6

by
te

s)

476

477

478

479

480

481

Byte 0 RANGE 1 channel 3 (LSB)

482 Byte 1 RANGE 1 channel 3

Byte 2 RANGE 1 channel 3

483 Byte 3 RANGE 1 channel 3 (MSB)

Byte 0 RANGE 2 channel 3 (LSB)

DGT4 / DGTQ / DGT4AN / DGTQAN

34

N°Reg. Holding
Registers

Description

A
re

a
S

et
u

p
:

P
A

G
E

 2
3

(1
6

by
te

s)

484 Byte 1 RANGE 2 channel 3

Byte 2 RANGE 2 channel 3

485 Byte 3 RANGE 2 channel 3 (MSB)

486

487

Byte 0 RANGE 1 channel 3 Division (LSB)

488 Byte 1 RANGE 1 channel 3 Division (MSB)

Byte 0 RANGE 2 channel 3 Division (LSB)

489 Byte 1 RANGE 2 channel 3 Division (MSB)

490

 Channel 3 Decimals

491 Channel 3 Unit of Measure (5)

A
re

a
S

et
u

p
:

P
A

G
E

 3
1

(1
6

by
te

s)

548

549

550

551 Byte 0 RANGE 1 channel 4 (LSB)

Byte 1 RANGE 1 channel 4

552 Byte 2 RANGE 1 channel 4

Byte 3 RANGE 1 channel 4 (MSB)

553 Byte 0 RANGE 2 channel 4 (LSB)

Byte 1 RANGE 2 channel 4

554 Byte 2 RANGE 2 channel 4

Byte 3 RANGE 2 channel 4 (MSB)

555

A
re

a
S

et
u

p
:

P
A

G
E

 3
2

(1
6

by
te

s)

556

557 Byte 0 RANGE 1 channel 4 Division (LSB)

Byte 1 RANGE 1 channel 4 Division (MSB)

558 Byte 0 RANGE 2 channel 4 Division (LSB)

Byte 1 RANGE 2 channel 4 Division (MSB)

559

560 Channel 4 Decimals

 Channel 4 Unit of Measure (5)

561

562

563

DGT4 / DGTQ / DGT4AN / DGTQAN

35

(5) NOTE: Significance of the numeric value in the Unit of Measure field:

 0 Grams

 1 Kilograms

 2 Tons

 3 Pounds

5.3. Coils Status data area

The "Coils status" data area is written by the master (is therefore read by the instrument) and is made up of coils of 1 bit.

Table 5.3: Modbus Coils Status

N° Coil. Coils Status Bit meaning
 0 1

00001 (0) Digital output 1 (1) Not active Active

00002 (1) Digital output 2 (1) Not active Active

Only DGT-Q

N° Coil. Coils Status Bit meaning

 0 1

00003 (2) Digital output 3 (1) Not active Active

00004 (3) Digital output 4 (1) Not active Active

00005 (4) Digital output 5 (1) Not active Active

00006 (5) Digital output 6 (1) Not active Active

(1) Writing allowed if the related output has no associated function.

DGT4 / DGTQ / DGT4AN / DGTQAN

36

6. CALIBRATION

Calibration holding registers:

REGISTER DATA
40901 Number of calibration point
40902 1st calibration point weight (high)
40903 1st calibration point weight (low)
40904 2nd calibration point weight (high)
40905 2nd calibration point weight (low)
40906 3rd calibration point weight (high)
40907 3rd calibration point weigh (low)
40908 Zero calibration ADC value (low)
40909 Zero calibration ADC value (high)
40910 1st calibration point ADC value (high)
40911 1st calibration point ADC value (low)
40912 2nd calibration point ADC value (high)
40913 2nd calibration point ADC value (high)
40914 3rd calibration point ADC value (high)
40915 3rd calibration point ADC value (high)

REGISTER DATA

40951 Unit of measure (g, kg, t, lb)

40952 1st range division

40953 2nd range division

40954 Decimals

40955 1st range capacity (high)

40956 1st range capacity (low)

40957 2nd range capacity (high)

40958 2nd range capacity (low)

Input register: 30116 calibration status. Values:

VALUE DESCRIPTION

0 MODBUS_CALIBRATION_NOT_STARTED

1 MODBUS_CALIBRATION_ACQUISATION_UNDERWAY

2 MODBUS_CALIBRATION_ACQUISATION_OK

3 MODBUS_CALIBRATION_ACQUISATION_ERROR

4 MODBUS_CALIBRATION_OK

5 MODBUS_CALIBRATION_ERROR

SPECIFICAL COMMANDS:
NUMBER COMMAND NOTES

35 (23 H) READ_CALIBRATION Copy of calibrations data of the cannel equal to parameter 1 into temporary area
36 (24 H) WRITE_CALIBRATION Store of temporary data into calibration data (non-volatile memory)
37 (25 H) POINT_ACQUISITION Parameter 1 is the point to acquire
38 (26 H) ABORT_CALIBRATION Abort the calibration under way

DGT4 / DGTQ / DGT4AN / DGTQAN

37

CALIBRATION SEQUENCE:

A Use command READ CALIBRATION with parameter 1 equal to the channel to calibrate (1st
channel is zero). If type is equal to dependent channels parameter 1 can be equal to zero only.

B If necessary set metrological values in the registers 40951-40958

C Set calibration points in register 40901

D Set calibration weight(s) in registers 40902-40907

E If a theoretical calibration is to be executed write directly registers 40908-40915

F Otherwise unload the platform and use the command POINT_ACQUISITION with parameter
equal to 0

G Wait for calibration status (Input Register 30116) is equal to
MODBUS_CALIBRATION_ACQUISTION_OK or MODBUS_CALIBRATION_ACQUISTION_ERROR

H On error repeat from step f

I On success load the platform with 1st calibration weight and use command POINT_ACQUISITION
with parameter equal to 1

J Wait for calibration status (Input Register 30116) is equal to MODBUS_CALIBRATION_OK or
MODBUS_CALIBRATION_ERROR

K On error repeat from step i

L On success repeat step i for other calibration points (if any)

M Use command WRITE_CALIBRATION to store the new calibration

N Wait for calibration status (Input Register 30116) is equal to MODBUS_CALIBRATION_OK or
MODBUS_CALIBRATION_ERROR

O On error repeat from step a
Note: while the command WRITE_CALIBRATION is in progress some Modbus reading timeout
may happen because of the saving procedure

